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Informal Takeaways

• Networking Research: Is it all solved?

– Glimpse into how Science R&E networks work

• Can machine (or deep) learning help with some network challenges?

– Supervised, unsupervised and reinforcement learning*

• What are the challenges? 

– Data issues 

– Experimental testbeds

– Real-world deployments

• Apart from Networks, what else are we exploring?
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Networking: A closer look
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Example Application

- 5 -

CETull@lbl.gov - 31 Aug 2015 
 

Slot die printer 

CETull@lbl.gov - 31 Aug 2015 
 

HipGISAXS & RMC

GISAXS

Slot-die printing of 
Organic photovoltaics

Borrowed from E. Dart



Current Science Network Trends
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Wide area Networks (WAN) for Science: 
What challenges do they see?

7



Resources are often underutilized

• Networks are designed to be resilient
• Traffic is highly variable and ‘bursty’ 

(big versus small transfers)
• Under-utilized resources
• Flow Congestion leads to  packet loss
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Transfer Performance can be Fragile

• Science uses Transmission Control Protocol (TCP) to send data
• 95% of science traffic uses TCP
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Congestion 
causes loss 
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throughput



Different TCP algorithms for Performance

• Each TCP uses complex algorithms to optimize performance (slow down 
or quicken data sending)

• Examples include video buffering on Youtube, VOIP (zoom) or big file 
transfers in few hours (Astronomy/physics from LHC)
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ML (Deep) learning to help
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Uses of Deep Learning 
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Objective: 
Learning  y= f(x)

x1

x2

x3

x4

Action 1

Action 2

Train neural network to minimize loss function 
(find the best weights for the neurons)



Compared to general Machine Learning
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Trained to recognize cats Trained to play games

Deep learning introduces ‘data-driven learning’ to 
build bespoke solutions



ML and Networking relationship

• Used in many specific applications
– Security (to identify anomalies)
– Classify traffic or user behavior on network
– Recognize problem area

• But a lot of these are on small-scale networks and work in simulated 
environments
– Problems with robustness of ML
– Trusting the ML
– Understanding how it works
– And more…
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Supervised Learning

When Labelled Data is Available
• Learning to recognize the labels
• Classification, object detection, anomaly detection
• Works very well if we can identify clear class boundaries
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Good versus 
bad flows 
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Unsupervised Learning

When NO labelled data in Available
• Learn underlying rules in the data
• Clustering, feature identification, 

recognize anomalies in test data

• Works well when working with 
domain scientists after clusters are 
recognized

16

Visualizing NERSC 
flows into clusters

*S. Campbell, F. Bannatwala

Plot of NERSC 
TCP flow 
transfers



Reinforcement learning (RL)* 

When NO data is available
– Learn via trial and error
– Interactions with the environment

• Agent views the state of the 
environment and chooses an action

• Each action, agent gets a reward
• Over time, agent learns optimal 

actions that give best rewards and 
what to do next
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Mapping Deep RL to Networks
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RL for Traffic Engineering

• Link-state (Dijkstra)-OSPF

– Shortest possible route
– Complete view of network topology

– Central traffic engineering

• Distance-vector (Bellman-Ford)-RIP

– Routers only know their neighbors

– Shortest possible route to destination via iterative calculations

– Each node updates routing tables

• New opportunities with Software defined networking + RL

– RL decisions to determining best routes
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Network ‘Self’ learns to reduce Congestion
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Predict if congestion 
will occur

Divert traffic to 
underused paths

Too many flows 
on same path Congestion Packet loss



But first …… Working with Dynamic Systems

• Supervised and Unsupervised learning:

– Good to find patterns in data sets

• Reinforcement: Teach systems how to perform (i.e. games, controlling 
systems, dynamic systems)
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Possible sequence of events:

• Eat-Run-Sleep

• Run-Sleep-Eat

Total Reward = rt=1 + rt=2 + rt=3 …+ ..+rt=T
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Useful in Games: Cartpole Example

• Inverted pendulum problem (control 
theory)

• Goal: balance the pole upright
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Agent Environ
ment

State (4) = Cart position, Cart 
velocity, Pole angle, Pole 
velocity

Action (2)= 
move left, 
move right

Reward = score



Cartpole (2): Learning state-action pairs

• Learning the Q function (value function or Bellman equation):

• When state and action space explodes, replace with a neural network
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state action value
state0 Move left 10

state1 Move right 2

… … ..

… .. .. DQN solve                                               
(state, action, reward, state_next)



Episodes and Experience

• At time t, 
– Agent sees environment state, st ∈ S
– Agent chooses an action to perform, a ∈ A(st). 
– As a consequence of its action, the environment changes its state, s(t+1)
– Agent receives a reward or payoff, rt. 

• Episodic learning over time

• Agents keep ‘experience-replay’ buffer to remember past actions 
• Hyperparameter optimization*:
– Alpha: Learning rate, how quickly can agent learn
– Gamma: prioritize immediate rewards versus future rewards
– Epsilon: exploration factor
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* Upcoming paper on effect of hyperparameters on RL



Different RL algorithms

Technique* model policy Action space observations operators
Q-learning free Off-policy discrete discrete Q-value
DQN free Off-policy discrete continuous Q-value
DDPG free Off-policy continuous continuous Q-value
TRPO free Off-policy continuous continuous advantage
A3C free Off-policy continuous continuous advantage

• Most are developed in robotics and games (All work in simulated world)
• No real-world deployments
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Challenge: 
Conversion to a Learning Problem
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Neural Network Learning a (WAN) Network

Agent EnvironmentTake action

Observe state 

Reward

Goal: maximize the cumulative reward 

Value or Policy learning
!" # $

Transition Dynamics
%($'()|$', #')

Each time step, RL agent collects states, generates an 
action and updates policy based on reward

Network 
Controller

Network 
State
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Convert to Learning problem

• Networks have multiple paths between source and destinations

• Convert the problem into Markov decision process: 

– (S, A, R, P), where s ∈ S set of states, a ∈ A set of actions, R(s, a, sʹ) 

represents reward  and probability P for executing action in state s. 

• RL agent at source: Chooses best path to send flows

– Trial-and-error to learn “optimal” paths: not just shortest path

– Once learned, it knows which one to choose for arriving flow
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Links with Software Defined Networks (SDN)
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Designing the Neural Network
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Predict congestion

Current loss on links

Network utilization

File transfer time

Move traffic to 
path A

Move traffic to 
path B

State Action



Challenge: 
Designing the Training Environment

31



Working with Network Emulators

• Mininet, NS2, CloudSim, examples of simulating network behavior
• Real-world is very different from simulations/emulator
– Noise, 
– lack of data, 
– too diverse data tools, 
– connection challenges

• Emulators not designed to test ML advances
• Do not scale to our problem
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Designing our own Network Gym: NetGame

• Agent-based modelling 
• Simulating traffic with complex needs 
• Scaling network up dynamically (complex scenarios, Multi-RL)
• Link in real data sets to fuel our simulation
• More control to understand why ML decisions are being made  
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Deploying RL in Mininet Simulation
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*DeepRoute: Herding Elephant and Mice Flows with Reinforcement Learning, MLN'2019 

State: Current 
network utilization
Action: Path to take
Reward: Flow 
completion time
Optimize: best path 



Challenge: 
Working with Dynamic Data
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Networks Change 

• Can the DRL Agent adapt?
• Model Predictive Control to learn underlying physical laws in the system 

Data    >   underlying laws  >  Agent
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A link disappear

*S Sun, Summer Intern

Environment Agent
Learn the 
underlying 
behavior 



Traffic patterns Constantly Change

• Correlation of traffic over year 2019
• No underlying patterns, seasonality 

because science transfers are erratic
• LSTM models were better to learn 

short term predictions. Long term 
patterns don’t affect us.

• Feed into graph neural networks to 
enhance predictions
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Example: Predicting Congestion Ahead of Time
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With Real-time Data
• Loss - Perfsonar
• Traffic statistics - SNMP
• Logs – NetFlow



NetPredict for Just-in-Time Flows
(Linked with ESnet portal)

• Deployed on Google Cloud 
Platform
– Different models can run 

at the same time to 
compute least congested 
paths

– Estimates transfer 
completion time

• Trust dashboard
– Real-time ML 

performance 

– Build engineer’s 
confidence in predictions
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Graph neural networks to improve predictons
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* P. Balaprakash (ANL)

*Data-driven Learning to Predict WAN Network Traffic, SNTA’20

GNN high order of accuracy 
compared to simple LSTM 
approaches 



Challenge: 
Deploying Theory to Practical
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Building Our Own Topology
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Chicago Texas

Chicago

Washington

NetGame
controller

A lot of our time is 
consumed by building 
real networks to test 
our algorithms

• ESnet and other network data 
• lack of labelled data



Gathering data, OpenStack nodes …
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Challenge: 
RL is promising to other Sciences too
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DQN (RL) for routing traffic

• Optimization problems in 
dynamic systems

• Not use Djikstra’s shortest 
possible route finding

• HPC load balancing 



DRL applicable in many areas

Reinforcement 
Learning agent

State s

Deep Neural Network

parameter θ

Using policy 
πθ(s, a)

Take action a

Action: at=(pt (Fa))

Reward = Σ"T$%/Σ"T$%'(

Replace the state and action to challenges in other 
dynamic systems
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DRL for 8-way Laser combining

• System self-learns to find a concentrated 
beam

• Comparing RL approaches for real-time 
control

• Working with physicists to deploy DRL on 
GPUs/FPGAs for high-speed control
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* Q. Du (ATAP)



DRL for FLEXLAB*

• DRL to optimize battery life and 
building comfort

• Hyperparameter tuning for real 
Flexlab deploys for temperature 
and cooling chambers

• Working with Energy 
technologists and experts
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* S. Touzani (ETA)

Temperature 
variability with 
different algorithms



Summary: 
Building our own Monitors/Controllers for optimizing 
traffic engineering
• Deploying algorithms to work with real-time data 
• Building our own Cloud data management systems that communicate with 

our simulators to train offline and online models
• We have learned RL is a strong approach, but needs tweaking to problem to 

be beneficial that traditional approaches 
• Working with Engineers/Domain scientists:
– Deploying controllers in testbeds
– Cost of processing data, training models and model reliability



DAPHNE Team*

* With ESnet engineers and SDM Collaborators

Shan Sun Divneet
Kaur

(Deep and Autonomous High-Performance Networks)



https://sites.google.com/lbl.gov/daphne

• mkiran@es.net
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Feel free to reach out with questions/interests!

https://sites.google.com/lbl.gov/daphne/home?

